
A Real-Time Rover Executive Based On Model-Based Reactive

Planning

M. Bernardine Dias

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213, USA
mbdias@ri.cmu.edu

Solange Lemai

LAAS/CNRS
7 ave. du Colonel Roche

31077 Toulouse cedex 4, France
slemai@laas.fr

Nicola Muscettola

NASA Ames Research Center
MS 269-2

Moffett Field, CA 94035, USA
mus@email.arc.nasa.gov

Abstract

This paper reports on the experimental verification of
the ability of IDEA (Intelligent Distributed Execution
Architecture) effectively operate at multiple levels of
abstraction in an autonomous control system. The basic
hypothesis of IDEA is that a large control system can be
structured as a collection of interacting control agents,
each organized around the same fundamental structure.
Two IDEA agents, a system-level agent and a
mission-level agent, are designed and implemented to
autonomously control the K9 rover in real-time. The
system is evaluated in the scenario where the rover must
acquire images from a specified set of locations. The
IDEA agents are responsible for enabling the rover to
achieve its goals while monitoring the execution and
safety of the rover and recovering from dangerous states
when necessary. Experiments carried out both in
simulation and on the physical rover, produced highly
promising results.

1. Introduction
Robotics space exploration requires autonomous

control. While executing critical maneuvers or moving on
rugged terrains the speed of the needed control loops does
not allow closing the loop with ground control due to
large communication delays Limited communication
bandwidth and high personnel costs also increase the time
and cost for recovering from on-board anomalies if large
ground control crews are involved. The need to increase
science output and operations safety while reaching for
more ambitious and complex exploration goals strongly
calls for more autonomous robots.

Some of the most autonomous space systems that have
flown [9] or are preparing to fly [4] employ on-board

automated planning systems. A planner receives goals
either from the ground or from on-board task experts. The
planner has access to a declarative model describing the
necessary conditions that have to be satisfied in a plan in
order to correctly achieve a goal and execute any
supporting activities. On the basis of the model, the
planner uses a standard planning engine, i.e., a search
procedure that efficiently explores a large number of
possible ways to concatenate goals and supporting
activities. This is done within the temporal and resource
constraints intrinsic in the problem. Once a plan has been
generated, it is read by a simple interpreter that issues
appropriate commands to the performing system and
monitors execution feedback returning from it.

Plan driven control is attractive in several respects.
Perhaps the most important is the high level of assurance
that it can deliver. The declarative model is essentially a
constraint-based formal specification of the possible
control behaviors of the system. In traditional flight
software this specification is typically manually translated
into the running code. Plan-based control instead
eliminates this error-prone and difficult-to-validate
development phase. Provided that the model correctly
captures the physics of the devices and the desired control
laws, the planning engine will guarantee the correctness
of the control software. Of course, this argument relies on
achieving a high level of assurance for the search engine.
But reuse of the search engine without change across
several applications subjects it to several cycles of
rigorous testing, intrinsically increasing its reliability.
Moreover, engine reuse also make it economically
feasible to use high-cost/high-reliability validation such
as application of formal methods [6].

However, so far planners are rarely used in on-board
control systems for robots. When they are used, the
planners are typically relegated to optimizing high-level

task allocation over extended horizon while lower-level
control has been achieved with procedural execution [12]
or behavior-based control [2]. This situation is partly due
to a reaction to early attempts to build plan-based mobile
control systems [5] where planning was identified as a
principal obstacle to the achievement of reactive
behaviors. An important question, therefore, is whether it
is possible to build planner-based core controllers that are
fast enough to satisfy the reactive requirements of robotic
controllers while fulfilling the high-assurance promise of
plan-based computation.

This paper describes preliminary work in this direction.
We describe the design and implementation of a rover
controller that uses planning as the core reasoning engine
of a real-time executive. The control system has been
demonstrated on the K9 rover testbed (Figure 1) [1] at the
NASA Ames Research Center. The tasks performed
include some simple mission scenarios requiring the rover
to take pictures with the on-board camera and recovering
from simple faults such as excessive tilt and roll. The
on-board executive was implemented using a
general-purpose, planner-based distributed agent
architecture, the Intelligent Distributed Execution
Architecture (IDEA). It demonstrates IDEA’s viability for
the implementation of real-time robotic controllers.

This paper is organized as follows. Section 2 gives a
brief overview of IDEA agent architecture and describes
how planning is integrated at the core of the execution
cycle. Section 3 describes the test scenarios run on the K9
rover and how the scenario is modeled by separate IDEA
agents. Section 4 reports experimental results while
section 5 concludes the paper and discusses future work.

Figure 1 The K9 Rover

2. Structure of IDEA
The most common organizational structure of

autonomous control systems that have been used in
practical applications is hybrid multi-layered, with several
technologically diverse layers cooperating to achieve the
robot’s desired behavior. In mobile robotics, for example,
a common layered controller separates between a
low-level functional layer, often organized as a collection
of controllers communicating according to a static routing
map, and a high level decision layer, typically centered
around a procedural execution system [10]. Technological
diversity among layers is problematic since each layer’s
machinery is typically described with a different
computational model and supports different programming
languages and methods without a clear mapping between
them. This is problematic for two reasons. Firstly, it
increases the cost and difficulty of building complex
autonomous controllers since a roboticist is supposed to
thoroughly understand each computational model to be
able to effectively program in it. Secondly, it increases the
cost of validation and decreases the reliability of the
software, since often the same information may need to be
represented in two different ways in different layers.
Moreover, lack of uniformity between layers increases the
difficulty of using automated validation systems.

The Intelligent Distributed Execution Architecture
(IDEA) postulates a different approach to the organization
of complex autonomous controllers. The basic hypothesis
is that a large control system can be structured as a
collection of interacting control agents, each organized
around the same fundamental structure. Each atomic
IDEA agent is structured in the same way and uses a
model-based reactive planner as its core engine for
reasoning. Each agent is required to operate with
real-time guarantees. In fact, each agent has an intrinsic
execution latency, a time quantum within which all
computations needed to execute a “sense/plan/act” cycle
must complete, otherwise the IDEA agent is declared
faulty and must be taken off-line. The existence of an
execution latency allows bridging the perceived gap
between AI-based methodologies to control and
traditional control theory. In fact, the latency can be
directly mapped to a controller’s sampling rate, the
fundamental measurement of responsiveness in
traditional control theory.

Figure 2 describes the core structure of an atomic IDEA
agent.

Plan
Runner

...

Controlling
System

Goal Execution Feedback

Controlling
System

Goal

Execution
FeedbackControlled

System

Controlled
System

Plan Service
Layer Search

Engine
Search
Control

Plan Database

Model

Reactive Planner

Goal Register

Plan
Runner

Plan
Runner

...

Controlling
System

Goal Execution Feedback

Controlling
System

Controlling
System

Goal

Execution
FeedbackControlled

System Goal

Execution
FeedbackControlled

System

Controlled
System

Plan Service
Layer

Plan Service
Layer Search

Engine
Search
Engine

Search
Control

Plan Database

Model

Reactive Planner

Goal Register

Figure 2 Structure of an IDEA agent
The agent communicates with external systems through

a set of goal registers. At any point in time a register must
contain an active goal describing the “interaction
contract” with an external system. The content of the
register always takes the form P(i→ s) where P is the
name of a procedure, i is a (possibly empty) vector of
input values and s is a (possibly empty) vector of return
status parameters. When the goal is established, all
arguments in i must be bound to some value i0 within the
domain of possible values for i. The contract terminates
when either s is bound to a specific value, due to sensory
feedback, or a timer associated to <P, i0> expires. The
latter allows procedures to be terminated by pre-emption
in cases such as lack of response within a maximum
allowable wait time. A subsystem interacting with the
IDEA agent can be either controlling or controlled. It is
controlled if the IDEA agent initially sets the value of the
goal register with a new procedure and then waits for the
controlled subsystem to set the status s or for the
procedure timer to expire. It is controlling in the
symmetrical case. A subsystem can be both controlling
and controlled by interacting with the IDEA agent with
different registers with different communication
directions. Subsystems can be other IDEA agents or
legacy software and hardware devices whose incoming
and outgoing communications can be mapped into a finite
set of goal registers maintained by the IDEA agent. The
compositionality of the communication infrastructure
allows the implementation of arbitrary distributed
multi-agent control system structures.

Each goal register must behave according to a “timeline

semantic”. This means that at any point in time all goal
registers must contain an active procedure. This, of course,
cannot be satisfied when a procedure returns or must be
terminated. In this case the agent goes through an
execution cycle whose goal is to eliminate expired or
returned procedures from goal registers and replace them
with new procedures. The agent must perform this
activity with a strict real-time guarantee, within the
execution latency associated with the agent. The shorter
the execution latency, the faster the IDEA agent can close
the control loops in which it is involved.

The module with the responsibility of starting and
possibly aborting an execution cycle is the Plan Runner.
The plan runner can only be activated at discrete times,
synchronously with the agent’s internal clock. The clock’s
granularity is the agent’s execution latency. If a sensor
value is received at time t, this will cause an execution
cycle to start at time kλ where λ is the agent’s latency and
(k-1) λ ≤ t < kλ. Moreover, if the agent decides to start a
new procedure during an execution cycle starting at time
kλ, the procedure will be loaded in the goal register at a
time τ, where kλ ≤ τ < (k+1) λ. Note therefore that in the
worst case an IDEA agent’s responsiveness, i.e., the
maximum temporal distance between a stimulus (sensor
value) and its response (the message announcing to the
controlled agent that it should start a new procedure), is
always 2λ. This permits precise quantification of the
reactivity of a control agent, a measure that is usually
elusive in control approaches based on planning or other
Artificial Intelligence techniques.

The core reasoning in an IDEA agent is performed by
the Reactive Planner. During an execution cycle, the
reactive planner has the responsibility of determining the
procedures with which expired goal registers should be
loaded. The reactive planner explicitly represents
histories for the agent’s timelines in a Plan Database.
These describe both past and future contents of each goal
register (either incoming or outgoing) and auxiliary state
variables possibly describing non-observable state
variables in controlled/controlling systems and internal
state maintained by the IDEA agent to implement its
control law. In the reference implementation of an IDEA
agent, the planner uses a heuristic search procedure
implemented through a standard search engine and guided
by search control rules implemented in an appropriate
search control language associated with the engine. The

planner conducts the search by continuously consulting a
Model, i.e., a description of how procedures can follow
each others on timelines and hence in goal registers. The
model also describes in which way start and end of
procedures can synchronize in all legal plans (see Section
3.3 for an example). By directly interpreting a declarative
model, we believe that an IDEA agent can achieve higher
levels of assurance than procedural approaches to plan
execution and control.

The IDEA architecture supports several mechanisms
for addressing the “planning bottleneck” problem, the
problem that has led to the summary dismissal of planning
as a core control technology in the past. First of all, note
that the architecture assumes the existence of a central
plan database for each agent. It is possible for an agent to
have several processes, besides the reactive planner,
manipulate the plan database. Some of these processes
can have the responsibility to build sections of plans over
extended periods of time in the future, possibly with the
goal of “optimizing” some quality criteria. These
processes operate at lower priority than the reactive
planner and are controlled by the plan runner through goal
registers, i.e., with the same coordination protocol used
with external systems. Therefore, as long as the planning
horizon over which the deliberative planner is working
never intersects the current execution time, deliberative
planning can operate in parallel with reactive execution
and does not affect the reactivity of the agent. The
reactive planner itself may want to operate over planning
horizons that are longer than the minimum possible one
(one latency interval starting at the current execution
time). However, the length of this horizon and the
complexity of the model that the reactive planner must
use determine the worst case cost for solving a reactive
planner problem and therefore determine the agent’s
latency. Vice versa, if the latency is bound by some
characteristics of the controlled subsystems, one can
deduce strict limits to the planning horizon as a function
of the complexity of the model. Reducing the planning
horizon will cause the agent to be more reactively myopic
which may require compiling more information in the
“control law” timelines in the model or require more
extensive deliberative planning in advance (e.g.,
explicitly representing contingency branches) that allow
the reactive planner simply to select an action among
those cached in the plan database by the deliberative

planner rather than having to synthesize one from scratch
every time.

Another way to tune the performance of an IDEA agent
is to select a plan database/planning technology with the
appropriate expressivity/performance tradeoff. For
example, when it is important to reason about time,
resources and bound uncertainty, then it could be
appropriate to use constraint-based temporal planning
technologies such as the one employed in the Remote
Agent on-board planner. However, if the model matches
an asynchronous discrete event control system, then a
propositional representation and fast propositional
incremental planning may be better suited to the task and
achieve better performance. The IDEA architecture
supports the use of different planning technologies by
providing a standardized interface, the Plan Service Layer,
between the planner and the goal register. Different
planning technologies can be used as long as they can
support a standard set of methods provided by the plan
service layer. Also, an appropriate mapping must be
defined between the modeling infrastructure of IDEA and
the internal modeling needed by different plan database
technologies.

In summary, the IDEA architecture provides an
implementation of a set of basic services for building
agents (goal registers and their input/output
communication protocols, the plan runner, the plan
service layer, the model) that we believe will be
applicable across a wide variety of agents at multiple
levels of abstraction in an autonomous control system.
The proof of whether this goal can be achieved or not
depends both on theoretical analysis and on experimental
validations, such as the one reported in this paper.

3. A rover controller using IDEA

We have designed and implemented an IDEA controller
for the K9 rover (Figure 1). The K9 rover is a
six-wheeled, solar-powered rover complete with a
manipulator. K9’s mechanisms are a clone of those of the
"FIDO" (Field Integrated Design and Operations) rover
developed at JPL[11]. The rover's avionics,
instrumentation, and its autonomy software were
developed at NASA Ames.
The rover carries a variety of instruments on board,
including a compass, an inertial measurement unit and

three pairs of monochromatic cameras (WideEye and 2
pairs of HazCams) used for navigation and instrument
placement. Other instruments are mounted on an
articulated arm that allows their precise placement for
contact science. The WideEye stereo pair consists of a
stereo pair of CMOS cameras mounted on a 10.93 cm
baseline. The individual cameras consist of analog (RS170)
output CMOS cameras with a 510x492 pixel resolution.
Like the WideEye cameras, the front and rear HazCam
stereo pairs consist of stereo pairs of CMOS cameras
mounted on a 10.8 cm baseline. The individual cameras
consist of analog (RS170) output CMOS cameras with a
510x492 pixel resolution. The rover also carries a pair of
high-resolution, color stereo cameras (HawkEye), which
consists of a stereo pair of high resolution multi-spectral
cameras spaced on a 27.9 cm baseline. The individual
cameras utilize a 960x800 CMOS detector with 10
bits/pixel resolution and square pixel format, and the
CHAMP, an arm-mounted, focusable microscopic camera
developed at the University of Colorado, Boulder. The
WideEye and HawkEye camera pairs are fitted on a PanTilt
unit.

In this section, we first present the structure of the
IDEA controller and its mapping to low-level rover
control software. We then describe the test scenario and
the models used by each IDEA agent to support this
application. The scenario and the models have been tested
in simulation and on-board the rover. Some results are
discussed at the end of this section.

3.1. Structure of the IDEA controller

������� � depicts the mapping between the IDEA
controller and the K9 controllers. The K9 controllers
provide a functional layer of capabilities used by the
IDEA controller. These capabilities include low-level
commands – for instance the simple pan/tilt or camera
commands – as well as some more complex behavioral
commands, such as “drive to a position”. Query functions
can be used to obtain sensory information such as the
rover’s location, pitch/roll/yaw angles and the internal
bay’s temperature. The overall control software is
composed by three subsystems organized in a
three-layered hierarchy. The top layer of the hierarchy
includes two IDEA agents: the System Level and Mission
Level agents. The bottom layer interacts with the System
Level agent according to the IDEA inter-agent protocol,

although it is not implemented as an IDEA agent. The
mapping is obtained through the K9Relay which behaves
as a parser/decoder, translating the goals sent by the
System Level agent into the corresponding commands or
information requests to the K9 controllers. We used
CORBA as the underlying messaging infrastructure used
to exchange goals and execution feedback between the
IDEA agents and to exchange messages between the K9
controllers and the K9Relay.

3.2. Scenario

The IDEA control system has been tested on the
following mission scenario. The rover must acquire
images from several specified locations. A set of goals is
sent to the rover, each consisting of a location and
parameters for the camera and the pan/tilt unit. The rover
decides in which order to accomplish these goals,
monitors their execution and recovers from dangerous
states.

Figure 3 Mapping the IDEA agents to K9

Responsibilities have been assigned to the IDEA agents
as follows. The Mission-Level agent receives goals (e.g.
from the ground controllers) and decides on their best
ordering using a deliberative planner. Execution of the
plan at the mission-level sends one goal at a time to the
System-Level agent that is responsible for expanding
lower-level activities, monitoring execution and planning
recovery actions if necessary.

The System-Level agent is responsible for monitoring
rover safety while executing its plan. In particular, if
safety limits for tilt and/or roll angles are exceeded, the
system-level agent immediately stops the nominal
execution, orders the rover to backup, executes a turn in
place by a set angle, and resume execution of appropriate

actions to achieve the goal. All of this is achieved through
local reactive planning and plan execution.

3.3. Model description

The underlying planning technology used in both IDEA
controllers is the EUROPA planning technology [7], a
direct descendent of the Planner/Scheduler that was part
of the Remote Agent [8]. The modeling language used for
the agent models is the Domain Description Language
(DDL) supported by EUROPA. Thus, designing a model
is equivalent to defining a set of parallel timelines, sets of
procedure types that can appear on each timeline and a set
of constraints for each time interval over which a
procedure can extend: temporal constraints between
procedure intervals (also called compatibilities), duration
constraints and parametric constraints that tie together all
token variables (including the interval start time, end time,
duration and input and status argument of the procedure).

Search control is implemented through heuristic rules
used both by the reactive and deliberative planner. The
rules prioritize subgoals that the planner should work on
at each step of the search and prioritizes slots on the
timelines into which subgoals could be inserted. For the
K9 controller, however, only a few heuristics were needed.
They were used to prevent the Reactive Planner from
trying to bind specific parameters, mainly the parameters
corresponding to the output arguments and return status,
since their values are determined by the subsystem. Note
that in principle it would be possible for the reactive
planner to “guess” the return values of procedures. This is
particularly important if the planner does look-ahead a
few steps in the future or needs to develop contingent
plans. In this case, the planner value of the return
arguments would be checked with respect to the one
actually obtained from the subsystem. If they do not
match, then the reactive planner needs to modify the plan
according to the value returned from the subsystem which
is the true sensor value. Our controller, however, was
simple enough that the planner needed only to determine
the next action without look-ahead and therefore could
afford to leave the value of the return parameters unbound.
This behavior is consistent with typical approaches to
procedural execution.

�

������� 	�
����� ������� ����������� �������

���������

������� 	 depicts the interactions between the

timelines defined in the System-Level’s model. There are
four types of timelines:

�� The Goal timelines contain the goal sent by the
Mission-Level and manage its completion. One
of these timelines is shared with the
Mission-Level agent.

�� One timeline has been defined for each K9
component controlled by the agent: Location,
Camera, Pan/Tilt unit, Fans. These Executable
timelines contain tokens corresponding to the
actual commands sent to the K9 controllers. For
each command, a completion status is returned
by the K9 controllers.

�� To allow the monitoring of the rover safety, one
Data-Polling and Alarm Detection timeline is
defined for each monitored characteristic
(pitch/roll angles, temperature, power…). These
timelines contain tokens corresponding to
information requests to the rover. For instance, at
each agent clock tick, a PitchMeasure
(→ ?alarm ?pitch, ?pitch_rcvd) goal is sent.
The parameter ?pitch is a status value returning
the sensed pitch value, ?pitch-rcvd an additional
status parameter that determines whether the
token terminated because a value was received
for ?pitch or because the token was pre-empted,
and ?alarm is another Boolean return status
parameter. ?alarm and ?pitch are linked by a
constraint that sets ?alarm to True if ?pitch is
greater than a predefined threshold. Once the

Plan Runner has received and posted the value
of ?pitch in the plan database, the Reactive
Planner applies the constraint, and a possible
alarm is detected.

�� For error recovery two other Monitoring
timelines have been added to manage the
different alarms and recovery steps. These
timelines are especially useful with regard to the
motion of the rover, as different motion alarms
can occur at the same time and during the
recovery actions. One timeline (MotionHealth)
gives the state of the rover at each agent clock
tick: if there is an alarm, it identifies what type of
alarm it is. Moreover, priorities can be defined
between the different alarms. Each alarm
corresponds to a specific sequence of recovery
steps. The other timeline (MotionMonitor) is
useful to manage the next recovery step to
execute, depending on the evolution of the state
of the rover. By means of compatibilities, the
Reactive Planner will then insert the
corresponding command tokens on the
Executable timelines.

�������� gives an illustration of a simpler monitoring
with an example of compatibilities for the token
TempReadCompare(→ ?state_fan?temp,?temp_rcvd) of
the timeline TempMeasure. The temperature alarm
detection is similar to the pitch case. Once the value of the
temperature (output value ?temp) has been received and
posted by the plan runner (?temp_rcvd is set to True), the
reactive planner applies the following constraints : the
parameter-function new_fan_state() detects a possible
alarm and sets the boolean ?state_fan to True if necessary,
then the compatibility meets inserts a command token
DeviceSetFanState(?state_fan→) on the Executable
timeline Fans. During the same control cycle a goal is sent
to the K9Relay that translates into a direct command to
the appropriate K9 low-level controller. This command
finally turns the fan on. Note that DeviceSetFanState has
an empty status vector. This is because we assume that the
command will be executed in open loop without direct
sensory feedback.

 (Define_Compatibility
 (SINGLE((Rover_Class TempMeasure_SV))
 ((TempReadCompare(→?state_fan ?temp True))))
:duration_bounds [*temp_freq* *temp_freq*]
:parameter_functions
 (new_fan_state(*tempthreshold* ?temp ?state_fan))
:compatibility_spec
 (AND

 (meets (SINGLE ((Rover_Class Fans_SV))
 ((DeviceSetFanState (?state_fan→))))))))

Figure 5 Example of compatibility for the token
TempReadCompare

The system-level model contains only forward
chaining compatibilities, since it is designed for a purely
reactive agent, planning over an horizon covering only
one execution latency ahead in reaction to new sensory
information or new goals.

As stated before, the Mission Level agent receives a set
of goals from the ground controllers. It uses deliberative
planning to find the best ordering of the goals and sends
one goal at a time to the System Level agent for expansion
and execution. The Mission Level monitors the
completion of each goal and can replan if necessary

The underlying model contains three types of timelines.
A set of Internal timelines is used by the deliberative
planner to find the ordering of the goals. Deliberative
planning is managed by means of a specific Planner
timeline that contains Planning tokens which parameters
specify, notably, the start and end times of the planning
horizon. The execution of such a token triggers the
corresponding planning process. Finally, the plan
resulting from deliberative planning (i.e. a sequence of
goals) is put on a Goal timeline. This timeline is shared
between the two agents. Its execution by the Reactive
Planner at the Mission Level communicates one goal at a
time to the System Level and monitors the completion
status returned back.

The System Level has been tested on board the K9
rover (with one goal sent by the Mission Level from a
distant machine). Deliberative planning and interaction
between the two agents have been tested in simulation.

4. Results
During the tests on board, the rover has successfully

accomplished its goal while correctly responding to

successive alarms. We have mainly monitored two types
of data: the evolution of the duration of the plan runner
cycle and the CPU used by the IDEA agent. The IDEA
agent can be CPU consuming, especially during the phase
of deliberative planning at the mission level. The duration
of the plan runner cycle is decisive since it should not
exceed a specified latency corresponding to the control
rate. It mainly depends on the number of decisions made
by the reactive planner during a cycle. The first
experiments pointed out an undesirable increase of the
cycle duration with time. This increase was due to the fact
that the plan database grows drastically with time, the data
polling for instance implies the insertion of tokens at each
cycle. Thus each decision made by the reactive planner
takes more and more time due mainly to propagation of
temporal and parametric constraints throughout the large
plan database.

This problem was solved by deleting past actions as
one goes along. Since the system level agent is purely
reactive, it only needs to know about the currently
executed tokens and the previous ones on each timeline.
�������� and �������� show the new results obtained in
simulation. We observe that the CPU usage never exceeds
30 % (whereas 90% of CPU usage can occur during the
deliberative planning). The duration of the cycle is stable,
the few peaks correspond to cycles where more decisions
were made (reception and expansion of a goal, reaction to
an alarm). The system-level agent achieves a 2Hz control
rate on a 300MHz Pentium, which is adequate for
slow-moving planetary rovers.�

0

10

20

30

40

0 75 150 225 300 375 450 525 600 675 750 825 900
�

Figure 6 System Level agent: evolution of CPU usage
(%) with time (s)

0

0,2

0,4

0,6

0,8

1

0 60 120 180 240 300 360 420 480 540 600 660 720

Figure 7 System Level agent: evolution of Plan
Runner cycle duration (s) with time (s)

It should be noted that the model has been designed so
that no backtracking is needed (and almost no heuristics).
Further work should be done to compare these results
with a less thorough but less heavy model and
chronological backtracking.
�

5. Conclusions and Future Work
In this paper we reported on preliminary experiments

toward demonstrating the practical feasibility of a
planner-based, multi-agent architecture for controlling
mobility and remote sensing of a planetary rover. Much
work remains to be done. To be viable for the limited
computational resources available in flight systems,
IDEA agents need to as streamlined as possible. Any
overhead in interpreting the model and searching for a
reactive plan should be eliminated. We believe that much
of this can be achieved by appropriately tuning the
planner and increasing the efficiency of the planning
technology used in each IDEA agent. In some cases,
however, a purely search-based, “interpreted” approach
may still be too slow. Therefore we plan to explore the
feasibility of compilation schemes in which procedural
executives satisfying the IDEA protocol are automatically
generated from agent models. In this case the planner will
still have a central role during system validation and, we
believe, during the compilation phase. An interesting
question that we will explore is characterizing the
space/time tradeoff between a large but fast procedural
expansion versus a more compact model encoding that is
more slowly interpreted by a planner at run time.

References
[1] J. L. Bresina, M. Bualat, M. Fair, R. Washington, A.

Wright, “The K9 on-board rover architecture”, ESA
Workshop on “On-board autonomy”, 17-19 October
2001.

[2] R. A. Brooks, “A robust layered control system for a
mobile robot”, IEEE Journal of Robotics and
Automation, 2:14-23, 1986.

[3] R.A. Brooks, “Planning is just a way of avoiding
figuring out what to do next”, MIT AI Lab Memo No.
899, May 1987.

[4] S. Chien, R. Sherwood, G. Rabideau, R. Castaño, A.
Davies, M. C. Burl, R. Knight, T. Stough, J. Roden, P.
Zetocha, R. Wainwright, P. Klupar, J. Van Gaasbeck,
P. Cappelaere, D. Oswald, “The Techsat-21
autonomous space science agent”, International
conferences on Autonomous Agents and Multi-Agent
Systems (AAMAS’ 02), Bologna, Italy, 2002.

[5] R. E. Fikes, P. E. Hart, N.J. Nilsson, “Learning and
executing generalized robot plans”, in Artificial
Intelligence, 3(4):251-288, 1972.

[6] K. Havelund, M. Lowry, J. Penix. “Formal Analysis of
a Space Craft Controller using SPIN” IEEE
Transactions on Software Engineering, Volume 27,
Number 8, August 2001.

[7] A. Jonsson, and J. Frank, "A Framework for Dynamic
Constraint Reasoning using Procedural Constraints, in
Workshop on Constraints in Control, part of the 5th
International Conference on Principles and Practices
of Constraint Programming, (CP99), 1999.

[8] A.K. Jonsson, P. Morris, N. Muscettola, K. Rajan, B.
Smith, “Planning in interplanetary space: theory and
practice”, in Proceedings of the Fifth International
Conference on Artificial Intelligence Planning
Systems (AIPS’00), Breckenridge, Colorado, 2000.

[9] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams.
Remote Agent: To Boldly Go Where No AI System Has
Gone Before. Artificial Intelligence, 103(1-2):5--48,
1998.

[10] I.A.D. Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras
D. Mutz, "Toward Developing Reusable Software
Components for Robotic Applications" Proceedings

of the International Conference on Intelligent Robots
and Systems (IROS), Maui, Hawaii, 2001

[11] P. S. Schenker, E. T. Baumgartner, R. A. Lindemann,
H. Aghazarian, A. J. Ganino, G. S. Hickey, D. Q. Zhu,
L. H. Matthies, Jet Propulsion Lab.; B. H. Hoffman, T.
L. Huntsberger, "New Planetary Rovers for
Long-range Mars Science and Sample Return,"
Intelligent Robots and Computer Vision XVI:
Algorithms, Techniques, Active Vision, and Materials
Handling, SPIE Proc. Vol. 3522, pp. 215, Boston, MA,
October 1998.

[12] R. Simmons, D. Apfelbaum, “A Task Description
Language for Robot Control”, Proceedings of the
International Conference on Intelligent Robotics and
Systems (IROS), Vancouver, Canada, 1998.

